Réciproque Du Théorème De Pythagore Exercices Corrigés Equation

Fiche de mathématiques Ile mathématiques > maths 4 ème > Triangle rectangle Fiche relue en 2016 exercice 1 Sachant que ABC est un triangle rectangle en A et que AC = 6, BC = 10. Calculer AB. Représenter ce triangle. exercice 2 Les triangles ABC suivants sont ils rectangles? (les figures sont volontairement fausses). Retrouvez le cours sur le théorême de Pythagore Dans le triangle ABC rectangle en A, on applique le théorème de Pythagore: AB² + AC² = BC² Ici on cherche à calculer AB, donc: AB² = BC² - AC² Ainsi, AB² = 10² - 6² = 100 - 36 = 64 AB² = 64 AB = 8 (unités de longueur) Pour le premier triangle: [AC] est le côté le plus long du triangle ABC. On a: AC² = 5² = 25 et AB² + BC² = 3² + 4² = 9 + 16 = 25 Donc AC² = AB² + BC². D'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B. Pour le deuxième triangle: AC² = 10² = 100 et AB² + BC² = 7² + 6² = 49 + 36 = 85 Donc AC² AB² + BC². D'après la réciproque du théorème de Pythagore, le triangle ABC n'est pas rectangle en B. Publié le 22-06-2016 Cette fiche Forum de maths

  1. Réciproque du théorème de pythagore exercices corrigés sur
  2. Réciproque du théorème de pythagore exercices corrigés et
  3. Réciproque du théorème de pythagore exercices corrigés en

Réciproque Du Théorème De Pythagore Exercices Corrigés Sur

Réciproque du théorème de Pythagore (4ème) - Exercices corrigés: ChingAtome qsdfqsd Signalez erreur ex.

Réciproque Du Théorème De Pythagore Exercices Corrigés Et

De l'exercice 2: 👉 On a FE > FD > DE, donc l'angle droit serait en D. On a d'une part: FE² = 10² = 100 cm Et d'autre part: FD² + DE ² = 8² + 4² = 64 + 16 = 80 cm Comme FE² ≠ FD² + DE², d'après la réciproque du théorème de Pythagore, le triangle DEF n'est pas rectangle en D. 👉 On a GH > HI > GI, donc l'angle droit serait en I On alors: GH² = 17² = 289 cm HI² + GI ² = 15² + 8² = 225 + 64 = 289 cm Comme GH² = HI² + GI ², d'après la réciproque du théorème de Pythagore, le triangle GHI est rectangle en I 👉 On a KL > JL > JK, donc si le triangle était rectangle, il le serait en J. Donc: KL ² = 9² = 81 JL² + JK² = 6² + 5² = 36 + 25 = 61 Comme KL² ≠ JL² + JK², d'après la réciproque du théorème de Pythagore, on peut affirmer que le triangle JKL n'est pas rectangle en J. Tu dois désormais bien comprendre le théorème de Pythagore: tu sais calculer n'importe quelle longueur dans un triangle rectangle, et prouver qu'un triangle est rectangle (ou pas). Tout ça avec une bonne rédaction… Pas mal! On te conseille de t'entraîner encore sur quelques exercices, pour que la méthode soit automatique dans ton cerveau.

Réciproque Du Théorème De Pythagore Exercices Corrigés En

Théorème de Pythagore et sa réciproque COMPETENCE: 1°) Extraire des informations, les organiser, les confronter à ses connaissances. 2°) Utiliser un raisonnement logique et des règles établies (théorèmes) pour parvenir à une conclusion. Question 1 Démontrer que le triangle A B C ABC est rectangle en B B. Correction Dans le triangle A B C ABC, le plus grand côté est A C = 5 AC=5 cm. Calculons d'une part: A C 2 = 5 2 AC^{2} =5^{2} A C 2 = 25 AC^{2} =25 Calculons d'autre part: A B 2 + B C 2 = 3 2 + 4 2 AB^{2} +BC^{2} =3^{2} +4^{2} A B 2 + B C 2 = 9 + 16 AB^{2} +BC^{2} =9+16 A B 2 + B C 2 = 25 AB^{2} +BC^{2} =25 Or A C 2 = A B 2 + B C 2 {\color{blue}AC^{2}=AB^{2} +BC^{2}} Donc, d'après la réciproque du théorème de Pythagore le triangle A B C ABC est rectangle en B B.

Chapitre de maths incontournable du programme de mathématiques de 4e, le théorème de Pythagore est soit attendu par les élèves ou au contraire redouté. En effet, ce théorème du triangle rectangle introduit la notion importante de démonstration en maths. Dans cet article, on t'aide à comprendre le théorème de Pythagore: le cours de géométrie, comment l'utiliser, comment rédiger une démonstration ainsi qu'un exercice type à la fin. Tu vas voir, ce n'est pas si difficile! 😉 Un peu d'histoire Avant de comprendre le théorème de Pythagore, intéressons-nous à son auteur: Pythagore. Ce dernier était vraisemblablement un mathématicien, astronome et philosophe, né à Samos vers – 570. On lui doit, entre autres, la propriété suivante: "la somme des angles d'un triangle est égale à 180°. " Le savais-tu? 💡 Comme nous n'avons cependant aucune trace factuelle de son existence, certains historiens pensent qu'il n'aurait jamais existé. Son nom serait alors associé à une communauté de savants. Bien qu'il ait donné son nom au théorème de Pythagore, les propriétés de ce dernier étaient déjà utilisées par les Babyloniens 1000 ans avant lui.

Exemple type Le triangle XYZ est rectangle en X. Tel que XY = 10 cm et XZ = 8 cm. 👉 Calculer la longueur de l'hypoténuse. Pour le moment, on oublie la rédaction puisqu'on s'intéresse au calcul même. On va le faire pas à pas. On a donc: YZ²= XY² + XZ 2 On remplace les longueurs par leurs valeurs chiffrées YZ² = 10² + 8² Prends ta calculatrice et calcule les valeurs une par une (ou de tête si t'es fort en calcul mental) YZ² = 100 + 64 YZ² = 164 Attention: Ce n'est pas terminé, YZ est au carré. Afin d'avoir YZ seul, on doit trouver sa racine carrée, le fameux √ YZ =√164 YZ ≈12, 8 cm 👉 Et voilà! 12, 8 cm est la longueur de l'hypoténuse. À noter 🤌 Le théorème de Pythagore permet de calculer la longueur de n'importe quel côté d'un triangle rectangle, pas forcément de l'hypoténuse. Si on reprend notre exemple, on te donne YZ = 12, 8 cm et YX = 10 cm. Calculer XZ Tu adaptes donc la formule: YZ² = XY² + XZ², alors XZ² = YZ² – YX² 💡 Si tu es observateur, tu as remarqué que l'on soustrait la plus grande valeur à la plus petite.