Théorème De Liouville (Algèbre Différentielle) Définitions Le Théorème Fondamental И Exemples

Les historiens [Qui? ] estiment cependant qu'il n'y a pas là manifestation de la loi de Stigler: Cauchy aurait pu facilement le démontrer avant Liouville mais ne l'a pas fait. Le théorème est considérablement amélioré par le petit théorème de Picard, qui énonce que toute fonction entière non constante prend tous les nombres complexes comme valeurs, à l'exception d'au plus un point. Le théorème de d'Alembert-Gauss (ou encore théorème fondamental de l'algèbre) affirme que tout polynôme complexe non constant admet une racine. Autrement dit, le corps des nombres complexes est algébriquement clos. Ce théorème peut être démontré en utilisant des outils d'analyse, et en particulier le théorème de Liouville énoncé ci-dessus, voir l'article détaillé pour la démonstration. En termes de surface de Riemann, le théorème peut être généralisé de la manière suivante: si M est une surface de Riemann parabolique (le plan complexe par exemple) et si N est une surface hyperbolique (un disque ouvert par exemple), alors toute fonction holomorphe f: M → N doit être constante.
  1. Théorème de liouville auto

Théorème De Liouville Auto

En mathématiques, et plus précisément en analyse et en algèbre différentielle (en), le théorème de Liouville, formulé par Joseph Liouville dans une série de travaux concernant les fonctions élémentaires entre 1833 et 1841, et généralisé sous sa forme actuelle par Maxwell Rosenlicht en 1968, donne des conditions pour qu'une primitive puisse être exprimée comme combinaison de fonctions élémentaires, et montre en particulier que de nombreuses primitives de fonctions usuelles, telle que la fonction d'erreur, qui est une primitive de e − x 2, ne peuvent s'exprimer ainsi. Définitions Un corps différentiel est un corps commutatif K, muni d'une dérivation, c'est-à-dire d'une application de K dans K, additive (telle que), et vérifiant la « règle du produit »:. Si K est un corps différentiel, le noyau de, à savoir est appelé le corps des constantes, et noté Con( K); c'est un sous-corps de K. Étant donnés deux corps différentiels F et G, on dit que G est une extension logarithmique de F si G est une extension transcendante simple de F, c'est-à-dire que G = F ( t) pour un élément transcendant t, et s'il existe un s de F tel que.

Théorème: Si $f$ est une fonction holomorphe et bornée sur $\mathbb C$, alors $f$ est constante. U ne des applications les plus classiques du théorème de Liouville est la démonstration du théorème de d'Alembert - tout polynôme sur $\mathbb C$ non constant admet une racine dans $\mathbb C$ - Soit en effet $P$ un tel polynôme et supposons que $P$ ne s'annule pas. On pose $f=1/P$. Puisque $P$ ne s'annule pas, $f$ est holomorphe sur $\mathbb C$; en outre, $f$ est bornée. En effet, si $|z|$ tend vers l'infini, il est clair que $|f(z)|$ tend vers 0, donc il existe $M$ tel que $f$ est bornée pour les $z$ avec $|z|>M$. D'autre part $f$ est bornée sur tout compact, en particulier sur l'ensemble des $z$ avec $|z|\leq M$. Il en résulte, d'après le théorème de Liouville, que $f$ est constante, ce qui est absurde! Ce théorème est en fait dû à Cauchy en 1844, mais le mathématicien allemand Berchardt (qui succède à Crelle en 1855 à la tête du célèbre journal qui porte son nom) en prend connaissance lors d'un exposé de Liouville et le lui attribue.