Leçon 253 (2020) : Utilisation De La Notion De Convexité En Analyse.

Une page de Wikiversité, la communauté pédagogique libre. L'inégalité de Jensen est une généralisation de l'inégalité de convexité à plusieurs nombres. Elle permet de démontrer des inégalités portant sur des expressions faisant intervenir plusieurs nombres, comme la comparaison entre la moyenne arithmétique et la moyenne géométrique de plusieurs nombres. La plupart de ces inégalités seraient délicates à démontrer autrement. Préliminaire [ modifier | modifier le wikicode] Rappelons le théorème démontré au premier chapitre et connu sous le nom d'inégalité de Jensen. Théorème Soit f une fonction convexe définie sur un intervalle I de ℝ. Alors, pour tout ( x 1, x 2, …, x n) ∈ I n et pour toute famille (λ 1, λ 2, …, λ n) ∈ (ℝ +) n telle que λ 1 + λ 2 + … + λ n = 1, on a:. Nous avons aussi le corollaire immédiat suivant: Corollaire Soit f une fonction convexe définie sur un intervalle I de ℝ. Alors, pour tout ( x 1, x 2, …, x n) ∈ I n, on a:. Il suffit de poser λ 1 = λ 2 = … = λ n = 1/ n dans le théorème de Jensen.

  1. Inégalité de convexité sinus
  2. Inégalité de convexité ln

Inégalité De Convexité Sinus

Leçon 253 (2020): Utilisation de la notion de convexité en analyse. Dernier rapport du Jury: (2019: 253 - Utilisation de la notion de convexité en analyse. ) Il s'agit d'une leçon de synthèse, très riche, qui mérite une préparation soigneuse. Même si localement (notamment lors de la phase de présentation orale) des rappels sur la convexité peuvent être énoncés, ceci n'est pas nécessairement attendu dans le plan. Il s'agit d'aborder différents champs des mathématiques où la convexité intervient. On pensera bien sûr, sans que ce soit exhaustif, aux problèmes d'optimisation (par exemple de la fonctionnelle quadratique), au théorème de projection sur un convexe fermé, au rôle joué par la convexité dans les espaces vectoriels normés (convexité de la norme, jauge d'un convexe,... ). Les fonctions convexes élémentaires permettent aussi d'obtenir des inégalités célèbres. On retrouve aussi ce type d'argument pour justifier des inégalités de type Brunn-Minkowski ou Hadamard. Par ailleurs, l'inégalité de Jensen a aussi des applications en intégration et en probabilités.

Inégalité De Convexité Ln

En particulier, \[ f\left( \dfrac{a+b}{2} \right) \leqslant \dfrac{f(a)+f(b)}{2}\] Exemple: La fonction exponentielle est convexe sur \(\mathbb{R}\). Pour tous réels \(a\) et \(b\), \[\exp\left(\dfrac{a+b}{2}\right) \leqslant \dfrac{e^a+e^b}{2}\] Soit \(f\) une fonction concave sur un intervalle \(I\). Pour tous réels \(a\) et \(b\) de \(I\), \[ f\left( \dfrac{a+b}{2} \right) \geqslant \dfrac{f(a)+f(b)}{2}\] Exemple: La fonction Racine carrée est concave sur \([0;+\infty[\). Pour tous réels \(a\) et \(b\) positifs, \[\sqrt{\dfrac{a+b}{2}} \geqslant \dfrac{\sqrt{a}+\sqrt{b}}{2}\] Inégalités avec les tangentes La convexité des fonctions dérivables permet d'établir des inégalités en utilisant les équations des tangentes. Exemple: La tangente à la courbe de la fonction exponentielle au point d'abscisse \(0\) a pour équation \(y=\exp'(0)(x-0)+\exp(0)\), c'est-à-dire \(y=x+1\). Puisque la fonction \(\exp\) est convexe sur \(\mathbb{R}\), la courbe de la fonction exponentielle est donc au-dessus de toutes ses tangentes et donc, en particulier, la tangente au point d'abscisse 0.

Voici la question et la réponse: Question: Réponse rapide: Voici ce que j'ai écrit sur ma copie: Si vous voulez aller plus loin sur ce thème, vous pouvez faire le sujet Maths I HEC ECS 1997, un peu difficile mais très formateur. Conclusion Vous savez maintenant tout ce qu'il y a à savoir sur la convexité des fonctions. Les deux exemples que nous venons de voir sont à connaître par cœur car ces questions tombent très souvent aux concours (et c'est plus classe d'y répondre comme cela plutôt que de tout passer d'un côté et d'étudier la fonction). On se retrouve très bientôt pour de nouvelles astuces mathématiques, et pendant ce temps-là, entraînez-vous!