Exercices Corrigés Sur Les Ensembles

Les ensembles exercices corrigés 1 bac sm. (1ère année bac sm) Exercice 1 On considère les deux ensembles: A = { 5+4k/10 / k ∈ ℤ} et B = { 5+8k′/20 / k′ ∈ ℤ} Montrer que: A ∩ B = ∅. Exercice 2 Soient les ensembles suivants: A = { π/4 + 2kπ/5 / k ∈ ℤ}, B = { 9π/4 − 2kπ/5 / k ∈ ℤ} et C = { π/2 + 2kπ/5 / k ∈ ℤ} Montrer que: A = B. Montrer que: A ∩ C = ∅. Exercice 3 Déterminer en extension les ensembles suivants: A = {( x, y) ∈ ℤ 2 / x 2 + xy − 2y 2 + 5 = 0}, B = { x ∈ ℤ / x 2 −x+2/2x+1 ∈ ℤ} et C = { x ∈ ℤ / ∣∣ 3x ∣− 4/2 ∣ < 1} Exercice 4 On considère l'ensemble suivant: E = { √x+√x − √x / x ∈ ℝ + *}. Exercices corrigés sur les ensembles 1bac sm. Montrer que: E ⊂] 0, 1]. Résoudre dans ℝ l'équation suivante: √x+√x = 1/2 + √x. A-t-on] 0, 1] ⊂ E? Exercice 5 On considère les ensembles: E = { 2k − 1 / k ∈ ℤ}, F = { 2k − 1/5 / k ∈ ℤ} et G = { 4−√x/4+√x / x ∈ [ 0, +∞ [} Montrer que: 8 ∉ F. Montrer que: E ⊂ F. Montrer que: F ⊈ E. Montrer que: G =] −1, 1]. Exercice 6 Soient A, B et C trois parties de E. Montrer que: A ∩ B ⊂ A ∩ C et A ∪ B ⊂ A ∪ C ⇒ B ⊂ C.

Exercices Corrigés Sur Les Ensemble.Com

On déduit que. pour tout, il existe tel que et, d'où exercice 13 Supposons qu'il existe une application injective. Soit, l'équation d'inconnu admet: Soit une solution unique qu'on note Soit pas de solution, alors on choisit un élément quelconque de, qu'on note tel que définie ainsi est une application de dans puisque tout élément de possède une unique image dans. Ensembles : 1 BAC SM:exercices corrigés | devoirsenligne. Elle est surjective puisque tout élément de est l'image par d'au moins un élément de qui est son image par Supposons qu'il existe une application surjective. Soit, l'équation possède au moins une solution. Posons une de ces solutions. On pose, définie ainsi est une application de dans puisque tout élément de possède une unique imqge dans.

Exercices Corrigés Sur Les Ensembles Lingerie

Montrer que si est injective ou surjective, alors. Soient et deux ensembles. Montrer qu'il existe une application injective de dans si et seulement s'il existe une application surjective de dans Soient et deux ensembles et une application. Montrer les équivalences suivantes: Soient et deux ensembles et soient et deux applications telles que soit bijective. 1) Montrer que est bijective. 2) En déduire que est bijective. Soient deux ensembles, et deux applications telles que: est surjective et est injective. Montrer que et sont bijectives. Soit un ensemble. Montrer qu'il n'existe pas de surjection de sur l'ensemble de ses parties. Soient deux ensembles et une application. 1) Montrer que est injective si et seulement si, pour tout et tout, on a. 2) Montrer que est surjective si et seulement si, pour tout et tout, on a. 3) Supposons. Exercices corrigés sur les ensembles lingerie. Déterminer l'application réciproque Soient trois ensembles et soit une famille d'éléments de. exercice 1 1) 2) Idem 1) 3) 4) 5) Et: 6) 7) Évident Soit Soit, alors Si: Alors et donc Et puisque, alors Il s'ensuit que et donc Si: Alors Or,, donc, on en tire que et donc On en déduit De la même manière, en inversant et, on obtient Donc Conclusion: exercice 2 Directement: Soit On a, donc, il s'ensuit De la même manière, en inversant et, on obtient On en déduit: Conclusion: exercice 3 1) L'application Injectivité: Soient et deux entiers naturels tels que est injective Surjectivité: n'est pas surjective car il n'existe pas d'antécédant pour les entiers naturels impairs.

Exercices Corrigés Sur Les Ensemble Contre

En sachant que: On conclut que exercice 16 On a est surjective et est injective, donc est bijective. D'autre part: est donc surjective et injective, donc bijective. En conclusion, est bijective et bijective, donc est bijective. exercice 17 Utilisons l'indication, Si était surjective, nous pourrions trouver tel que. Supposons d'abord; on obtient et par conséquent, ce qui contredit notre hypothèse. Supposons maintenant que; on obtient et par conséquent, ce qui contredit notre hypothèse. Par conséquent, l'élément n'appartient ni à, ni à son complémentaire, ce qui est impossible. Exercices corrigés sur les ensemble.com. Par suite, ne possède pas d'antécédent par, qui est donc non surjective. Remarque: Ce sujet entre dans le cadre du " paradoxe de Russell " (Paradoxe du menteur). exercice 18 Supposons d'abord injective et soient telles que. Alors, pour tout de, on a puisque est injective. On a donc bien. Pour montrer l'implication réciproque, on procède par contraposée en supposant que n'est pas injective. Soit tel que. Posons, et.

Exercices Corrigés Sur Les Ensemble Les

Conclusion: L'application Puisque Donc n'est pas injective Soit: Si est pair: Si est impair: On en déduit que est surjective Conclusion: 2) Donc: Si est impair: On en déduit: exercice 4 1) Soient et tels que On en déduit que Soit. Montrons qu'il existe tel que: Donc, pour tout triplet réel, il existe un triplet réel qui vérifie et qui est On conclut que Conclusion: 2) Directement d'après les résultats de la question précédente: 3) On a vu que tout élément de admet un antécédant par dans, donc: exercice 5 1) Si: Alors Si Soit: On en déduit que: On conclut que: 2) Si: Alors Si Soit: On en déduit que: On conclut que: 3) Conclusion: exercice 6 1) Soient,, des complexes quelconques. Reflexivité: car. Symétrie: car et donc. Exercices corrigés sur les ensembles ensemble - Analyse - ExoCo-LMD. Transitivité: et alors donc. Donc:. 2) La classe d'équivalence d'un point est l'ensemble des complexes qui sont en relation avec, C'est-à-dire l'ensemble des complexes dont le module est égal à. Géométriquement, la classe d'équivalence de est donc le cercle de centre et de rayon: exercice 7 1) Evident, il suffit de remarquer que 2) Soit.

Exercices Corrigés Sur Les Ensemble Vocal

MT3062: Logique et théorie des ensembles Unité optionnelle de la licence de mathématiques, option mathématiques fondamentales. Sommaire du cours Site du second cycle Année 2004 Cours, exercices. Polycopié du cours 2003-2004 (l'introduction la thorie des ensembles n'est pas rdige). Feuille d'exercice 1. Feuille d'exercice 2. Feuille d'exercice 3. Problme 1. Le problme est rendre pour le mercredi 17 mars. Corrig du problme 1. Feuille d'exercice 4. Feuille d'exercice 5. Feuille d'exercice 6. Feuille d'exercice 7. Examen du 8 juin 2004 nonc et corrig. Travaux sur machines. Charte pour l'utilisation de la salle informatique. Introduction à PhoX (document distribué en cours). La page d'accueil de PhoX. Feuilles de TP PhoX. Sauvez la feuille dans votre répertoire. Editez la feuille avec xemacs. TD Math : Exercice + corrigé les ensembles - Math S1 sur DZuniv. Par exemple lancer un terminal, puis dans le terminal tapez la commande suivante: xemacs puis suivre les instructions. Feuille 1, version à utiliser sur machine:, version à imprimer:, corrig Feuille 2, version à utiliser sur machine:, version à imprimer:, corrig, nonc plus corrig Feuille 3, version à utiliser sur machine:, corrig Feuille 4, version à utiliser sur machine: Lire les fichiers pdf avec Mozilla dans la salle d'enseignement (2004) Il s'agit de Mozilla 1.

On cherche les éléments de tels que. On doit donc résoudre l'équation. Elle se factorise en. On en déduit: La classe d'équivalence de est constituée de deux éléments sauf si. exercice 8 Reflexivité: Pour tout on a: car. Antisymétrie: pour tels que et. Alors par définition de on a:. Et comme la relation est une relation d'ordre, alors:. Donc;. Ce qui implique que (dans ce cas en fait est un singleton). Transitivité: soit tels que et. Si ou, alors il est clair que. Supposons que et alors:. Alors par transitivité de la relation, on obtient: Donc. Conclusion: exercice 9 1) Soient. dès que ou est injective. 2) Contre exemple: Soit un ensemble contenant éléments et considérant et évidemment surjectives. On aura alors. On a:, mais il n'existe pas d'élément de qui vérifie Donc n'est pas nécessairement surjective. exercice 10 Si est injective: comme:;, donc est bijective. Si est surjective: pour tout, il existe tel que et. Donc; donc est bijective. exercice 11 Supposons que sont bijectives. Soient Et puisque est injective, alors Or, est aussi injective, donc On en tire que De la même manière, on obtient Soit Puisque est surjective: Ce qui veut dire que De la même manière, on obtient Conclusion: Commençons par l'application Soit, puisque est surjective: Posons On a: L'application Soit, on note Puisque est surjective Il s'ensuit que Or, puisque est injective: L'application Soit On pose, donc Alors: Et puisque est injective: et exercice 12 Comme,.