Exercice Fonction Exponentielle

Dérivée avec exponentielle 1 Calcul de dérivées avec la fonction exponentielle. Exercice fonction exponentielle bac pro. Dérivée avec exponentielle 2 Simplification d'écriture (1) Propriétés algébriques de l'exponentielle. Simplification d'écriture (2) Simplification d'écriture (3) Simplification d'écriture (4) Equations avec exponentielle (1) Equations avec exponentielle (2) Inéquation avec exponentielle (1) Inéquation avec exponentielle (2) Choix d'une représentation graphique Exponentielles et limites. Correspondance de représentations graphiques Limite avec exponentielle Exponentielles et limites.

Exercice Fonction Exponentielle Bac Pro

Le maire d'une ville française a effectué un recensement de la population de sa municipalité pendant 7 ans. Les données recueillies sont présentées dans le tableau ci-dessous: Année 2013 2014 2015 2016 2017 2018 2019 Rang 0 1 2 3 4 5 6 Habitants 2 502 2 475 2 452 2 430 2 398 2 378 2 351 Dans la première partie de l'exercice, on modélisera le nombre d'habitants à l'aide d'une suite géométrique et dans la seconde partie, on utilisera une fonction exponentielle. Fonction exponentielle/Exercices/Croissances comparées — Wikiversité. Partie 1: Modélisation à l'aide d'une suite Calculer le pourcentage d'évolution de la population de la ville entre 2013 et 2014, entre 2014 et 2015, entre 2015 et 2016 et entre 2018 et 2019. Par la suite on estimera que la population diminue de 1% par an. On note p n p_n le nombre d'habitants l'année 2013+ n n. Montrer que la suite ( p n) (p_n) est une suite géométrique dont on donnera le premier terme et la raison. À l'aide de la suite ( p n) (p_n) estimer la population de la ville en 2030 en supposant que la diminution de la population s'effectue au même rythme pendant les années à venir.

Exercice Fonction Exponentielle Première

La fonction exponentielle Exercice 1: Règles de base (division) Effectuer le calcul suivant: \[ \dfrac{e^{4}}{e^{4}} \] On donnera la réponse sous la forme la plus simple possible. Exercice 2: Règles de base (inconnue) \[ \dfrac{e^{4x}}{e^{-2x}} \] On donnera la réponse sous la forme \( e^{ax+b} \) avec \( a, \:b \in \mathbb{Z} \) Exercice 3: Simplification d'une expression \[ \left(e^{5x}\right)^{5}\left(e^{-3x}\right)^{3} \] Exercice 4: Simplification littérale \[ \dfrac{e^{x}}{e^{-2x}}e^{4} \] Exercice 5: Règles de base (puissance) \[ \left(e^{4x}\right)^{-4} \] On donnera la réponse sous la forme la plus simple possible.

Exercice Fonction Exponentielle A La

Vérifier la valeur limite qu'on trouve quand tend vers 0. On estime que le système immunitaire est devenu suffisamment efficace contre le virus au bout de 10 jours. Quel que soit le traitement, les individus guérissent. Quel traitement conseillez-vous (limitation des effets sur l'organisme et de l'apparition de résistance chez les virus)? En serait-il de même si l'on pouvait arrêter le traitement au bout de 3 jours? La charge virale moyenne entre le début du traitement et l'instant est: pour le premier traitement: En particulier ce qui est normal. Exercice fonction exponentielle en. Au début de l'étude, la charge virale est de donc la charge moyenne pour des périodes très courtes au début de l'étude est proche de. pour le deuxième traitement: On trouve à nouveau que. Au bout de 20 jours, la charge virale moyenne est de: Au bout de 3 jours, la charge virale moyenne est de: Même si les différences ne sont pas très importantes, dans le cas d'un traitement court, on favorisera le deuxième traitement alors que dans le cas d'un traitement long, on favorisera le premier.

Le coefficient multiplicateur qui fait passer de p n + 1 p_{n+1} à p n p_n correspondant à une baisse de 1% est (voir coefficient multiplicateur): C M = 1 − 1 1 0 0 = 0, 9 9 CM=1 - \frac{ 1}{ 100} =0, 99 On a donc, pour tout entier naturel n n: p n + 1 = 0, 9 9 p n p_{n+1} = 0, 99p_n La suite ( p n) \left( p_n \right) est donc une suite géométrique de raison q = 0, 9 9. q = 0, 99. Son premier terme est p 0 = 2 5 0 2. p_0=2502. Modélisation par une fonction exponentielle - Maths-cours.fr. La population de la ville à l'année de rang n n est: p n = p 0 q n = 2 5 0 2 × 0, 9 9 n p_n=p_0\ q^n = 2502 \times 0, 99^n L'année 2030 correspond au rang 17. La population en 2030 peut donc, d'après ce modèle, être estimée à: p 1 7 = 2 5 0 2 × 0, 9 9 1 7 ≈ 2 1 0 9. p_{ 17} = 2502 \times 0, 99^{ 17} \approx 2109. Partie 2 f f est dérivable sur [ 0; + ∞ [ \left[ 0~;~ +\infty \right[. Pour déterminer le sens de variation de f f, on calcule sa dérivée f ′ f^{\prime}. Sachant que la dérivée de la fonction t ⟼ e a t t \longmapsto \text{e}^{ at} est la fonction t ⟼ a e a t t \longmapsto a\ \text{e}^{ at} on obtient: f ′ ( t) = 2 5 0 0 × − 0, 0 1 e − 0, 0 1 t = − 2 5 e − 0, 0 1 t f^{\prime}(t)=2500 \times - 0, 01 \text{e}^{ - 0, 01t} = - 25 \ \text{e}^{ - 0, 01t} − 2 5 - 25 est strictement négatif tandis que e − 0, 0 1 t \text{e}^{ - 0, 01t} est strictement positif (car la fonction exponentielle ne prend que des valeurs strictement positives) donc f ′ ( t) < 0 f^{\prime}(t) < 0 sur [ 0; + ∞ [ \left[ 0~;~ +\infty \right[.