Les Coniques Cours

Conique à la grecque P our les mathématiciens grecs, une conique est l'intersection d'un cône de révolution avec un plan. Suivant l'angle formé par le plan et les génératrices du cône, on trouve les 3 variétés de conique: ellipse, hyperbole et parabole. Ellipses, hyperboles et paraboles sont les 3 types de coniques propres. Pour certaines configurations particulières, il est possible que l'intersection du plan et du cône soit l'ensemble vide, un point, une droite ou deux droites. Ces ensembles constituent des coniques dégénérées. Définition géométrique moderne Soit un point F et une droite D (ne passant pas par F) du plan euclidien, et soit e un réel strictement positif. On appelle conique de directrice D, de foyer F et d'excentricité e l'ensemble des points M du plan vérifiant: Suivant les diverses valeurs de e, on trouve les 3 types de conique: e<1: ellipse, e=1: parabole, e>1 hyperbole. La figure ci-dessous permet de mesurer l'influence de l'excentricité e quand le foyer F et la directrice D sont fixés.

Les Coniques Cours De Maths

2ème cas: Une génératrice du cône est parallèle au mur. Le cône de lumière se projette en une parabole. 3ème cas: Des génératrices du cône ne rencontrent pas le mur et dans ce cas un deuxième cône de lumière intercepte le mur. Les cônes de lumière se projettent en une hyperbole. Télécharger la figure dynamique au format GeoGebra. Cliquer sur l'image pour ouvrir la figure dynamique dans le navigateur: Intuitivement, on pourrait croire que les coniques se construisent en menant plusieurs arcs de cercle de centres et de rayons différents. Ceci est faux, les coniques ne se construisent pas à l'aide du compas. Il existe cependant de nombreuses constructions point par point qui permettent de visualiser les coniques. En voici quelques-unes: - Exemples de constructions d'une ellipse et d'une parabole. - Exemples de constructions d'une ellipse et d'une hyperbole. - Exemple de construction d'une parabole. A noter également un petit bricolage facile permettant de dessiner une ellipse. Pour cela, il faut se munir d'un morceau de carton, de deux punaises et d'un peu de ficelle.

Les Coniques Cours Du

Une introduction aux coniques Des coniques pas iconiques…. Voilà un enseignement qui est un reste des programmes anciens dans lesquels il y avait de l'astronomie. Oui, Mesdames et Messieurs, dans le temps, on s'intéressait aux mouvements des planètes, non pas pour y lire l'avenir (ça, on le laisse aux charlatans de tout poil) mais une meilleure connaissance de l'univers. Le cours qui est présenté, ici, est très rudimentaire et peu développé. Il est juste suffisant pour savoir ce qu'est une ellipse, une hyperbole ou une parabole. Déjà bien!! Ellipses, Hyperboles, Paraboles Voici l'introduction aux ellipses qui vous définit ce que sont ces coniques. C'est une définition cartésienne, qui se prête aux calculs….. Le cours de présentation des coniques: définition d'une ellipse, d'une hyperbole, d'une parabole Foyer, directrices Voilà qui fait très pensionnat que de parler de foyer et de directrice. Nous présentons, dans ce paragraphe, un exposé plus géométrique de ce que sont les coniques….

Soient F un point fixé et D une droite telle que F n'appartienne pas à D. Soit e un réel strictement positif. On considère l'ensemble des points M du plan de projeté orthogonal H sur D tels que M vérifie la condition suivante: la distance de m à F sur la distance MH est égale à e. Cet ensemble est appelé conique de foyer F, de directrice D et d'excentricité e. Propriété: Les isométries et les similitudes transforment les coniques en des coniques de même excentricité. Si 0 < e < 1, la conique est une ellipse; Si e=1, la conique est une parabole; Si e>1, la conique est une hyperbole. Axe focal: L'axe focal d'une conique est la perpendiculaire à sa directrice D passant par F. Toute conique a pour axe de symétrie son axe focal. Sommets d'une conique: Les points d'intersection entre une conique et son axe focal sont appelés les sommets. Soit K le projeté orthogonal de F sur, K est le projeté orthogonal des éventuels sommets. Si e=1, la conique a un seul sommet, le point M, milieu de [FK]. Si e différent de 1, la conique a deux sommets: S, le barycentre de {(F, 1), (K, e)} et S', le barycentre de {(F, 1), (K, -e)}.