Les Vecteurs - Cours Seconde Maths - Tout Savoir Sur Les Vecteurs

Accueil Soutien maths - Produit scalaire Cours maths 1ère S Produit scalaire Produit scalaire de deux vecteurs Définition Soient et deux vecteurs du plan. • Si sont non nuls, on appelle produit scalaire de le nombre réel noté défini par: Si ou est le vecteur nul, alors où = est l'angle orienté formé par les vecteurs et. Vecteurs - Première - Exercices corrigés. ATTENTION Le produit scalaire de deux vecteurs n'est pas un vecteur mais un nombre réel. Expression analytique du produit scalaire Propriété a pour coordonnées (x, y) et a pour coordonnées (x', y') dans un repère orthonormé alors: Carré scalaire et norme Quelques points importants à retenir: ►Carré scalaire Soit un vecteur du plan. On appelle carré scalaire de le nombre réel noté Egalités remarquables On a les égalités suivantes: Vous avez choisi le créneau suivant: Nous sommes désolés, mais la plage horaire choisie n'est plus disponible. Nous vous invitons à choisir un autre créneau.

  1. Lecon vecteur 1ere s maths
  2. Lecon vecteur 1ère séance
  3. Lecon vecteur 1ere s francais

Lecon Vecteur 1Ere S Maths

A partir de la figure ci-dessous: Citer 4 vecteurs égaux à D E → \overrightarrow{DE} Citer 3 vecteurs égaux à A F → \overrightarrow{AF} Citer 2 vecteurs égaux à A F → + A I → \overrightarrow{AF} + \overrightarrow{AI} Corrigé Deux vecteurs sont égaux s'ils ont: la même norme (la notion de norme d'un vecteur est similaire à la notion de longueur d'un segment) la même direction le même sens Les vecteurs F B → \overrightarrow{FB}, A I → \overrightarrow{AI}, I C → \overrightarrow{IC}, G H → \overrightarrow{GH} sont égaux au vecteur D E → \overrightarrow{DE}. Les vecteurs D I → \overrightarrow{DI}, I B → \overrightarrow{IB}, E C → \overrightarrow{EC} sont égaux au vecteur A F → \overrightarrow{AF}. Lecon vecteur 1ere s francais. Dans un premier temps nous allons construire la somme A F → + A I → \overrightarrow{AF} + \overrightarrow{AI}. Pour cela, on utilise le fait que les vecteurs A I → \overrightarrow{AI} et F B → \overrightarrow{FB} sont égaux et la relation de Chasles. A F → + A I → = A F → + F B → \overrightarrow{AF} + \overrightarrow{AI} = \overrightarrow{AF} + \overrightarrow{FB} (car les vecteurs A I → \overrightarrow{AI} et F B → \overrightarrow{FB} sont égaux) A F + A I = A B → \phantom{{AF} + {AI}} = \overrightarrow{AB} (d'après la relation de Chasles).

Lecon Vecteur 1Ère Séance

\vec{n}=0$. Pour tout vecteur directeur $\vec{v}$ il existe un réel $k$ tel que $\vec{v}=k\vec{u}$. $\begin{align*} \vec{v}. \vec{n}&=\left(k\vec{u}\right). \vec{n} \\ &=k\left(\vec{u}. \vec{n}\right)\\ Ainsi les vecteurs $\vec{v}$ et $\vec{n}$ sont également orthogonaux. [collapse] Propriété 2: On considère une droite $d$ dont une équation cartésienne est $ax+by+c=0$. Le vecteur $\vec{n}(a;b)$ est alors normal à cette droite. Preuve Propriété 2 Un vecteur directeur à la droite $d$ est $\vec{u}(-b;a)$. $\begin{align*} \vec{u}. \vec{n}&=-ba+ab\\ Les vecteurs $\vec{u}$ et $\vec{n}$ sont orthogonaux. Lecon vecteur 1ères rencontres. D'après la propriété précédente, le vecteur $\vec{n}$ est donc orthogonal à tous les vecteurs directeurs de la droite $d$. Par conséquent $\vec{n}$ est normal à la droite $d$. Exemple: On considère une droite $d$ dont une équation cartésienne est $4x+7y-1=0$. Un vecteur normal à la droite $d$ est donc $\vec{n}(4;7)$. Propriété 3: Si un vecteur $\vec{n}(a;b)$ est normal à une droite $d$ alors cette droite a une équation cartésienne de la forme $ax+by+c=0$.

Lecon Vecteur 1Ere S Francais

Image d'accueil Objectifs de ce cours Prérequis A qui s'adresse ce cours?

Exemple. Soit A B C D E F ABCDEF un hexagone régulier de centre O O et de côté 3 3.