Relation D Équivalence Et Relation D Ordre Totale

Définition1: soit E un ensemble, on nomme relation d'ordre sur E toute relation binaire réflexive, antisymétrique et transitive sur E. Définition 2: soit E un ensemble, on nomme relation d'ordre strict sur E toute relation binaire antiréflexive et transitive sur E. Définition 3: soit E un ensemble, on nomme relation d'équivalence sur E toute relation binaire réflexive, symétrique, transitive. Ordre total, ordre partiel. une relation d'ordre sur E est dite relation d'ordre total si deux éléments quelconques de E sont comparables, c'est à dire on a situation x y ou bien y x. Si par contre il existe au moins un couple (x; y) où x et y ne sont pas comparables la relation est dite relation d'ordre partiel.

  1. Relation d équivalence et relation d ordre des
  2. Relation d équivalence et relation d ordre de malte
  3. Relation d équivalence et relation d'ordres
  4. Relation d équivalence et relation d ordre de mission
  5. Relation d équivalence et relation d ordre totale

Relation D Équivalence Et Relation D Ordre Des

~ est symétrique: chaque fois que deux éléments x et y de E vérifient x ~ y, ils vérifient aussi y ~ x. ~ est transitive: chaque fois que trois éléments x, y et z de E vérifient x ~ y et y ~ z, ils vérifient aussi x ~ z. Par réflexivité, E coïncide alors avec l' ensemble de définition de ~ (qui se déduit du graphe par projection). Inversement, pour qu'une relation binaire sur E symétrique et transitive soit réflexive, il suffit que son ensemble de définition soit E tout entier [ 1]. Définition équivalente [ modifier | modifier le code] On peut aussi définir une relation d'équivalence comme une relation binaire réflexive et circulaire [ 2]. Une relation binaire ~ est dite circulaire si chaque fois qu'on a x ~ y et y ~ z, on a aussi z ~ x. Classe d'équivalence [ modifier | modifier le code] Classes d'équivalence de la relation illustrée précédemment. « Classe d'équivalence » redirige ici. Pour la notion de classe d'équivalence en mécanique, voir Liaison (mécanique). Fixons un ensemble E et une relation d'équivalence ~ sur E. On définit la classe d'équivalence [ x] d'un élément x de E comme l'ensemble des y de E tels que x ~ y: On appelle représentant de [ x] n'importe quel élément de [ x], et système de représentants des classes toute partie de E qui contient exactement un représentant par classe [ 3].

Relation D Équivalence Et Relation D Ordre De Malte

Merci d'avance pour votre aide! Posté par Edison re: Relation d'équivalence et d'ordre 17-02-18 à 16:32 Mince ils me demandent le graphe et j'ai fait un diagramme de Venn bon de toute façon si mon diagramme et juste alors mon graphe le sera aussi ce qui m'intéresse c'est juste de savoir si les relations sont correctes Posté par Edison re: Relation d'équivalence et d'ordre 17-02-18 à 16:44 2) J'ai mal recopié désolé... 5R2, 5R5 7R7 7R4, 7R1 3) On voit bien qu'il y a une relation d'équivalence car on remarque chaque fois que (par exemple) 7R4 <=> 4R7, 2R5 <=> 5R2... mais comment le montrer formellement? Posté par carpediem re: Relation d'équivalence et d'ordre 17-02-18 à 17:03 Citation: 1) 2 éléments en relation par R: 3R3 et 6R6 2 éléments qui ne sont pas en relation par 3: 3Ɍ2 6Ɍ5 n'importe quoi... on veut évidemment deux éléments distincts en relation si 2 et 3 ne sont pas en relation comment peux-tu écrire 3 R 2? Posté par Edison re: Relation d'équivalence et d'ordre 17-02-18 à 17:07 C'est un R "barré" pour dire "pas en relation" justement.

Relation D Équivalence Et Relation D'ordres

\) Définition: Classe d'équivalence Étant donné un ensemble \(E\) muni d'une relation d'équivalence \(\color{red}R\color{black}, \) on appelle classe d'un élément \(x\) l'ensemble: \(\boxed{C_x = \{y\in E ~|~ x \color{red}R\color{black} y\}}. \) Propriété: Toute classe d'équivalence contient au moins un élément. En effet, puisque tout élément \(x\) est équivalent à lui-même, la classe \(C_x\) de \(x\) contient au moins l'élément \(x. \) Théorème: Soient les classes \(C_x\) et \(C_y\) de deux éléments \(x\) et \(y. \) Ces classes sont disjointes ou sont confondues. Démonstration: \(1^{er}\) cas: \(C_x\cap C_y = \emptyset. \) Les deux classes sont disjointes. \(2^e\) cas: \(C_x\cap C_y \neq\emptyset. \) Soit \(z\in C_x\cap C_y. \) On a \(x \color{red}R\color{black} z\) et \(y \color{red}R\color{black} z, \) donc on a \(x \color{red}R\color{black} z\) et \(z \color{red}R\color{black} y, \) et par transitivité \(x \color{red}R\color{black} y. \) On en conclut que \(y\) est dans la classe de \(x\): \(y\in C_x.

Relation D Équivalence Et Relation D Ordre De Mission

Structure quotient [ modifier | modifier le code] Si E est muni d'une structure algébrique, il est possible de transférer cette dernière à l'ensemble quotient, sous réserve que la structure soit compatible (en) avec la relation d'équivalence, c'est-à-dire que deux éléments de E se comportent de la même manière vis-à-vis de la structure s'ils appartiennent à la même classe d'équivalence. L'ensemble quotient est alors muni de la structure quotient de la structure initiale par la relation d'équivalence. Par exemple si ⊤ est une loi interne sur E compatible avec ~, c'est-à-dire vérifiant ( x ~ x' et y ~ y') ⇒ x ⊤ y ~ x' ⊤ y', la « loi quotient de la loi ⊤ par ~ » est définie comme « la loi de composition sur l'ensemble quotient E /~ qui, aux classes d'équivalence de x et de y, fait correspondre la classe d'équivalence de x ⊤ y. » [ 4] (Plus formellement: en notant p la surjection E × E → E /~ × E /~, ( x, y) ↦ ([ x], [ y]) et f l'application E × E → E /~, ( x, y) ↦ [ x ⊤ y], l'hypothèse de compatibilité se réécrit p ( x, y) = p ( x', y') ⇒ f ( x, y) = f ( x', y').

Relation D Équivalence Et Relation D Ordre Totale

Remarque On peut munir une classe propre d'une relation d'équivalence. On peut même y définir des classes d'équivalence, mais elles peuvent être elles-mêmes des classes propres, et ne forment généralement pas un ensemble (exemple: la relation d' équipotence dans la classe des ensembles). Ensemble quotient [ modifier | modifier le code] On donne ce nom à la partition de E mise en évidence ci-dessus, qui est donc un sous-ensemble de l' ensemble des parties de E. Étant donnée une relation d'équivalence ~ sur E, l' ensemble quotient de E par la relation ~, noté E /~, est le sous-ensemble de des classes d'équivalence: L'ensemble quotient peut aussi être appelé « l'ensemble E quotienté par ~ » ou « l'ensemble E considéré modulo ~ ». L'idée derrière ces appellations est de travailler dans l'ensemble quotient comme dans E, mais sans distinguer entre eux les éléments équivalents selon ~.

Soit M un point du plan qui n'est pas l'origine: Cl(M) = \{N \in P \backslash O, O, M, N \text{ alignés}\} Par définition, il s'agit de la droite (OM). Exercice 901 Question 1 La relation est bien réflexive: Elle est symétrique: \text{Si} X \cap A =Y\cap A \text{ alors} Y\cap A= X \cap A Et elle est bien transitive: Si Et Alors X \cap A =Y\cap A = Z \cap A Question 2 Utilisations la définition: Cl(\emptyset) = \{ X \subset E, X \cap A = \emptyset \}=\{X \in E, X \subset X \backslash A \} C'est donc l'ensemble des sous-ensembles qui ne contiennent aucun élément de A. Passons à A: Cl(A) = \{ X \subset E, X \cap A =A\cap A= A \}=\{X \in E, A \subset X \} C'est donc l'ensemble des sous-ensembles contenant A. Et maintenant E. Comme E est inclus dans la classe de A, en utilisant la propriété sur les classes, on obtient directement: Cl(E) = \{ X \subset E, X \cap A =E\cap A= A \} = Cl(A) Question 3 Soit X un sous-ensemble de E. On sait que Cl(X) = \{Y \subset E, Y \cap A= X\cap A\} Si on pose On a C'est donc un représentant de X inclus dans A. Montrons qu'il est unique.